SPECIFICATION

- Supplier : Samsung electro-mechanics
- Product : Multi-layer Ceramic Capacitor

```
- Samsung P/N: CL21C103JBFNFNE
- Description : CAP, \(10 \mathrm{nF}, 50 \mathrm{~V}, \pm 5 \%, \mathrm{COG}, 0805\)
```


A. Samsung Part Number

$\begin{array}{ll}\text { CL } & \underline{21} \\ \text { (2) }\end{array}$
$\begin{array}{ll}\text { C } & 103 \\ (4)\end{array}$
J \quad B
F N
$\begin{array}{lll}\text { F } & \underline{N} & \underline{E} \\ \text { (9) } & \text { (10) } & \text { (11) }\end{array}$

(1) Series	Samsung Multi-layer Ceramic Capacitor			W:	$1.25 \pm 0.10 \mathrm{~mm}$	
(2) Size	0805 (inch code)	L: 2.00	$\pm 0.10 \mathrm{~mm}$			
(3) Dielectric	COG	(8)	Inner electrode		Ni	
(4) Capacitance	10 nF		Termination		Cu	
(5) Capacitance	$\pm 5 \%$		Plating		Sn 100\%	(Pb Free)
tolerance		(9)	Product		Product for	VER applica
(6) Rated Voltage	50 V	(10)	Special		Reserved	ure use
(7) Thickness	$1.25 \pm 0.10 \mathrm{~mm}$	(11)	Packaging		Embosse	7" reel

B. Structure and dimension

Samsung P/N (Lead Free)	Dimension(mm)			
	L	W	T	BW
CL21C103JBFNFNE	2.00 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	$0.50+0.20 /-0.30$

	Performance	Test condition
Capacitance	Within specified tolerance	$1 \mathrm{kHz} \pm 10 \% / 0.5 \sim 5 \mathrm{Vrms}$
Q	1,000 min	
Insulation Resistance	10,000 Mohm or 500 Mohm $\times \mu \mathrm{F}$ Whichever is smaller	Rated Voltage 60~120 sec.
Appearance	No abnormal exterior appearance	Microscop (X10)
Withstanding Voltage	No dielectric breakdown or mechanical breakdown	300% of the rated voltage
Temperature Characteristics	COG (From $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, Capacitance change	uld be within $\pm 30 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$)
Adhesive Strength of Termination	No peeling shall be occur on the terminal electrode	$500 \mathrm{~g} \times \mathrm{F}$, for $10 \pm 1 \mathrm{sec}$.
Bending Strength	Capacitance change : within $\pm 5 \%$ or $\pm 0.5 \mathrm{pF}$ whichever is larger	Bending to the limit (1mm) with $1.0 \mathrm{~mm} / \mathrm{sec}$.
Solderability	More than 75% of terminal surface is to be soldered newly	$\begin{aligned} & \text { SnAg3.0Cu0.5 solder } \\ & 245 \pm 5^{\circ} \mathrm{C}, 3 \pm 0.3 \mathrm{sec} . \\ & \text { (preheating : 80~120 }{ }^{\circ} \mathrm{C} \text { for } 10 \sim 30 \mathrm{sec} \text {.) } \end{aligned}$
Resistance to Soldering heat	Capacitance change : within $\pm 2.5 \%$ or $\pm 0.25 \mathrm{pF}$ whichever is larger Tan δ, IR : initial spec.	Solder pot : $270 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{sec}$.
Vibration Test	Capacitance change : within $\pm 2.5 \%$ or $\pm 0.25 \mathrm{pF}$ whichever is larger Tan δ, IR : initial spec.	Amplitude : 1.5 mm From 10 Hz to 55 Hz (return: 1 min .) 2hours ' 3 direction (x, y, z)
Moisture Resistance	```Capacitance change : within \(\pm 7.5 \%\) or \(\pm 0.75 \mathrm{pF}\) whichever is larger Q: \(\quad 200 \mathrm{~min}\) IR: \(\quad 500 \mathrm{Mohm}\) or \(25 \mathrm{Mohm} \times \mu \mathrm{F}\) Whichever is smaller```	With rated voltage $40 \pm 2^{\circ} \mathrm{C}, 90 \sim 95 \% \mathrm{RH}, 500+12 /-0 \mathrm{hrs}$
High Temperature Resistance	Capacitance change : within $\pm 3 \%$ or $\pm 0.3 \mathrm{pF}$ whichever is larger Q: $\quad 350 \mathrm{~min}$ IR: $\quad 1,000$ Mohm or $50 \mathrm{Mohm} \times \mu \mathrm{F}$ Whichever is smaller	With 200\% of the rated voltage Max. operating temperature 1000+48/-Ohrs
Temperature Cycling	Capacitance change : within $\pm 2.5 \%$ or $\pm 0.25 \mathrm{pF}$ whichever is larger Tan δ, IR : initial spec.	1 cycle condition Min. operating temperature $\rightarrow 25^{\circ} \mathrm{C}$ $\rightarrow \quad \text { Max. operating temperature } \quad \rightarrow \quad 25^{\circ} \mathrm{C}$ 5 cycle test

※ The reliability test condition can be replaced by the corresponding accelerated test condition.

D. Recommended Soldering method :

Reflow (Reflow Peak Temperature : $260+0 /-5^{\circ} \mathrm{C}$, 10 sec . Max)

Product specifications included in the specifications are effective as of March 1, 2013.
Please be advised that they are standard product specifications for reference only.
We may change, modify or discontinue the product specifications without notice at any time.
So, you need to approve the product specifications before placing an order.
Should you have any question regarding the product specifications,
please contact our sales personnel or application engineers.

Disclaimer \& Limitation of Use and Application

The products listed in this Specification sheet are NOT designed and manufactured for any use and applications set forth below.

Please note that any misuse of the products deviating from products specifications or information provided in this Spec sheet may cause serious property damages or personal injury.
We will NOT be liable for any damages resulting from any misuse of the products, specifically including using the products for high reliability applications as listed below.

If you have any questions regarding this 'Limitation of Use and Application', you should first contact our sales personnel or application engineers.
(1) Aerospace/Aviation equipment
(2) Automotive or Transportation equipment (vehicles, trains, ships, etc)
(3) Medical equipment
(4) Military equipment
(5) Disaster prevention/crime prevention equipment
(6) Any other applications with the same as or similar complexity or reliability to the applications set forth above.

