AK1573/AK1573B/AK1573C Frequency Synthesizer with Integrated VCO

1. General Description

AK1573 is the Integer-N frequency synthesizer with integrated VCO (Voltage Controlled Oscillator). It is composed of programmable charge pump, reference divider, programmable divider, dual modulus prescaler ($\mathrm{P} / \mathrm{P}+1$). With the feature of high-performance, low noise and small size, it can be used as a local signal source of a variety of frequency conversion.
By combining with an external loop filter, AK1573 form a complete Phase Locked Loop.
Access to the register is controlled by the serial interface of the 3 -wire and Power supply voltage is 2.7 V to 3.3 V .

2. Features

- Normalized Phase Noise
- Low Noise Integrated VCO

Operating Supply Voltage
$\square \quad$ Low Current Comsumption@0dBm Output
$-223 \mathrm{dBc} / \mathrm{Hz}$
$-86 \mathrm{dBc} / \mathrm{Hz} @ 10 \mathrm{kHz}$
$-112 \mathrm{dBc} / \mathrm{Hz} @ 100 \mathrm{kHz}$
2.7 to 3.3 V

AK1573	43 mA
AK1573B	44 mA
AK1573C	46 mA

1, 2, 4, 8, 16, 32, 64
-12 dBm to +6 dBm

24pin QFN (0.5 mm pitch $4 \times 4 \mathrm{~mm}$)
$-40{ }^{\circ} \mathrm{C}$ to $8{ }^{\circ}{ }^{\circ} \mathrm{C}$

- Frequency Coverage Options

	AK1573	AK1573B	AK1573C
VCO Frequency [MHz]	1480 to 2240	1728 to 2600	2100 to 3000
Divide by 1	1480 to 2240	1728 to 2600	2100 to 3000
Divide by 2	740 to 1120	864 to 1300	1050 to 1500
Divide by 4	370 to 560	432 to 650	525 to 750
Divide by 8	185 to 280	216 to 325	262.5 to 375
Divide by 16	92.5 to 140	108 to 162.5	131.25 to 187.5
Divide by 32	46.25 to 70	54 to 81.25	65.625 to 93.75
Divide by 64	30 to 35	30 to 40.625	32.8125 to 46.875

3. Ordering Guide

```
- AK1573
- AK1573B
- AK1573C
- AKD1573
- AKD1573B
- AKD1573C
```

24-pin QFN ($4.0 \mathrm{~mm} \times 4.0 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)
24-pin QFN ($4.0 \mathrm{~mm} \times 4.0 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)
24-pin QFN ($4.0 \mathrm{~mm} \times 4.0 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)
AK1573 Evaluation Board
AK1573B Evaluation Board
AK1573C Evaluation Board

4. Applications

$\square \quad$ Public safety and Community/Emergency Wireless System
\square Wireless applications

- Cellular BTS

5. Table of Contents

1. General Description 1
2. Features 1
3. Ordering Guide 2
4. Applications 2
5. Table of Contents 3
6. Block Diagram and Functions 4
6.1. Block Diagram 4
6.2. Functions 4
7. Pin Configurations and Functions 5
8. Absolute Maximum Ratings 6
9. Recommended Operating Conditions 7
10. Electrical Characteristics 7
10.1. Digital DC Characteristics 7
10.2. Serial Interface Timing 7
10.3. Analog Circuit Characteristics 8
10.4. Loop filter 10
11. Typical Characteristics 11
12. Register Map 21
13. Function Descriptions 28
13.1. Lock detect 28
13.2. Frequency Setting 30
13.3. Fast Lock-up mode 32
13.4. VCO 33
14. Power on sequence 34
15. Recommended External Circuits 35
16. Application Note 36
17. Interface circuit 37
18. Package 39
18.1. Outline Dimensions 39
18.2. Marking 40
19. Revision History 41

6. Block Diagram and Functions

6.1. Block Diagram

Figure. 1 Block Diagram

6.2. Functions

Block	\quad Function
N counter	It is composed of prescaler, Swallow Counter and Programmable Counter. VCO output signal is divided by N and passed to phase frequency detector (PFD).
VCO Divider	It divides VCO output signal and passes it to output buffer. Dividing ratio of $1,2,4,8,16,32$ and 64 can be selected.
R counter	It divides a reference signal by R and passes it to phase frequency detector (PFD).
VCO (Voltage Controlled Oscillator)	It generates a signal of the frequency corresponding to a voltage inputted to VCNT pin.
PFD(Phase Frequency Detector)	It outputs a signal corresponding to phase difference between N counter and R counter.
Charge Pump	Sweep or pull-in a current corresponding to a signal from PFD.

7. Pin Configurations and Functions

No.	Pin Name	I/O	Pin function	Power Down	Description
1	BIAS	AI	Charge pump current setting pin		Connect a $27 \mathrm{k} \Omega$ resistor to the ground
2	VREF2	AO	Internal reference voltage output pin	"L"	Connect a 470 nF capacitor to the ground
3	VCNT	AI	VCO control voltage input pin		
4	SCAP	AO	VCO Bias stabilizing connection pin	"L"	Connect a 100 pF capacitor to the ground
5	VCOVSS	G	Ground of VCO block		
6	VCOVDD	P	Power supply of VCO block		
7	TEST1	DI	TEST1 pin Connect to the ground		Pull Down Schmitt trigger input
8	TEST2	DI	TEST2 pin Connect to the ground		Pull Down Schmitt trigger input
9	PDN1	DI	Power down 1 pin. When PDN1 = "L", device is powered down and the registers are not retained.		Schmitt trigger input
10	OAVSS	G	Ground of Local buffer		
11	RFOUT_P	AO	Local signal output pin		Open collector
12	RFOUT_N	AO	Local signal complementary output pin		Connect a inductor and a register to VDD
13	PVDD	P	Power supply of Prescaler and LDO		
14	PVSS	G	Ground of Prescaler and LDO		
15	VREF1	AO	Output pin of LDO	"L"	Connect a 220 nF capacitor to the ground
16	REFIN	DI	Reference signal input pin		
17	PDN2	DI	Power down 2 pin. When PDN2 = "L", all blocks except LDO and VBG are powered down but the registers are retained		Schmitt trigger input
18	CLK	DI	Serial clock input pin.		Schmitt trigger input
19	DATA	DI	Serial data input pin.		Schmitt trigger input
20	LE	DI	Load enable input pin.		
21	LD	DO	Lock detect output pin	"L"	
22	CVPSS	G	Ground of Charge Pump		
23	CP	AO	CP signal output pin	Tri-State	
24	CPVDD	P	Power supply of Charge Pump		

AI: Analog input pin
AO: Analog output pin
AIO: Analog I/O pin
DI: Digital input pin
DO: Digital output pin
P : Power supply pin
G: Ground pin

* "Power Down" means the state in which power supply is applied and PDN1 / PDN2 pins = "L".
* The exposed pad at the center of the backside should be connected to the ground

Figure. 2 Package pin layout (Top view)

8. Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Description
Supply Voltage	VDD	-0.3	3.6	V	${ }^{*} 1,2$
Ground Level	VSS	0	0	V	${ }^{*} 3$
Analog input voltage	VAIN	VSS-0.3	VDD+0.3	V	${ }^{*} 1,4,6$
Digital input voltage	VDIN	VSS-0.3	VDD+ 0.3	V	${ }^{*} 1,5,6$
Input current	IIN	-10	10	mA	
Storage Temperature	Tstg	-55	125	${ }^{\circ} \mathrm{C}$	

Note

* 1. All voltage reference ground level: OV
* 2. Applied to the VCOVDD / PVDD / CPVDD pins
* 3. Applied to the CPVSS / PVSS / VCOVSS / OAVSS pins
* 4. Applied to the VCNT / REFIN pins
* 5. Applied to the CLK / DATA / LE / PDN1 / PDN2 / TEST1 / TEST2 pins
* 6. The maximum value must not exceed the absolute maximum rating of 3.6 V .

Exceeding these maximum ratings may result in damage to the AK1573. Normal operation is not guaranteed at these extremes.
9. Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Unit	Description
Operating Temperature	Ta	-40		85	${ }^{\circ} \mathrm{C}$	
Supply Voltage	VDD	2.7	3.0	3.3	V	Applied to the VCOVDD / PVDD / CPVDD pins

10. Electrical Characteristics

10.1. Digital DC Characteristics

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit	Description
High level input voltage	Vih		$0.8 \times \mathrm{VDD}$			V	* 1.
Low level input voltage	Vil				$0.2 \times$ VDD	V	* 1.
High level input current 1	lih1	$\mathrm{Vih}=\mathrm{VDD}=3.3 \mathrm{~V}$	-1		1	$\mu \mathrm{A}$	* 2
High level input current 2	lih2	$\mathrm{Vih}=\mathrm{VDD}=3.3 \mathrm{~V}$	16.5	33	66	$\mu \mathrm{A}$	* 3
Low level input current	lil	$\begin{aligned} & \text { Vil }=0 \mathrm{~V}, \\ & \text { VDD }=3.3 \mathrm{~V} \end{aligned}$	-1		1	$\mu \mathrm{A}$	* 1
High level output voltage	Voh	$\mathrm{loh}=-500 \mu \mathrm{~A}$	VDD-0.4			V	* 4
Low level output voltage	Vol	$\mathrm{lol}=500 \mu \mathrm{~A}$			0.4	V	* 4

Note

* 1. Applied to the CLK / DATA / LE / PDN1 / PDN2 pins
* 2. Applied to the CLK / DATA / LE / PDN1 / PDN2 pins
* 3. Applied to the TEST1 / TEST2 pins
* 4. Applied to the LD pin

10.2. Serial Interface Timing

<Write-In Timing>

Figure. 3 Serial Interface Timing

Parameter	Symbol	Min.	Typ.	Max.	Unit	Description
Clock L level hold time	Tcl	25			ns	
Clock H level hold time	Tch	25			ns	
Clock setup time	Tcsu	10			ns	
Data setup time	Tsu	10			ns	
Data hold time	Thd	10			ns	
LE setup time	Tlesu	10			ns	
LE pulse width	Tle	25			ns	

10.3. Analog Circuit Characteristics

VDD $=2.7$ to $3.3 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{Ta}<85^{\circ} \mathrm{C}$, BIAS resistance $=27 \mathrm{k} \Omega$ unless otherwise specified.
The exposed pad at the center of the backside should be connected to the ground

Parameter		Min.	Typ.	Max.	Unit	Description
REFIN						
Input sensitivity		0.4		VDD	Vpp	REFIN frequency < 200MHz
		0.4		2	Vpp	REFIN frequency $\geq 200 \mathrm{MHz}$
Input Frequency Range		10		300	MHz	
Maximum available prescaler output Frequency				300	MHz	Design guarantee value
Phase Frequency Detector(PFD)						
PFD Frequency				104	MHz	Design guarantee value
Charge Pump						
Maximum Charge Pump current			2800		$\mu \mathrm{A}$	
Minimum Charge pump current			350		$\mu \mathrm{A}$	
Icp TRI-STATE leak current			1		nA	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcpo}=\mathrm{VDD} / 2$ Vcpo: CP pin voltage
Sink / Source current mismatch * 1			1	10	\%	$\mathrm{Vcpo}=\mathrm{VDD} / 2, \mathrm{Ta}=25^{\circ} \mathrm{C}$ Vcpo: CP pin voltage
Icp vs. Vcpo * 2			3	15	\%	$\begin{aligned} & 0.5 \leq \text { Vcpo } \leq \text { VDD }-0.5 \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$
VCO						
Operating Frequency Range		1480		2240	MHz	AK1573
		1728		2600	MHz	AK1573B
		2100		3000	MHz	AK1573C
VCO tuning Sensitivity			fvco 0.02		$\mathrm{MHz} / \mathrm{V}$	fvco: Oscillation Frequency
```Phase Noise @ 1.6GHz (AK1573) @ 1.8GHz (AK1573B) @ 2.1GHz (AK1573C) OUTLV[2:0] bits \(\geq\) "011"```	10 kHz offset		-86		$\mathrm{dBc} / \mathrm{Hz}$	VCOI bit = "1"
	100 kHz offset		-112		$\mathrm{dBc} / \mathrm{Hz}$	VCOI bit = "1"
	1 MHz offset		-133		$\mathrm{dBc} / \mathrm{Hz}$	VCOI bit = "1"
	10MHz offset		-151		$\mathrm{dBc} / \mathrm{Hz}$	VCOI bit = "1"
Normalized Phase Noise			-223		$\mathrm{dBc} / \mathrm{Hz}$	Note 3
Output Buffer						
OUTPUT Power @1GHz			6		dBm	OUTLV[2:0] bits = "111"
			3		dBm	OUTLV[2:0] bits = "101"
			1		dBm	OUTLV[2:0] bits = "011"
			-5		dBm	OUTLV[2:0] bits = "001"
Output Frequency		30			MHz	Design guarantee value
Regulator						
VREF1 start-up time				10	ms	

Note

* 1. Sink/Source current mismatch : [(|lsink|-||source|)/\{(||sink|+||source|)/2\}] * 100 [\%]
* 2. Icp v.s.Vcpo : $\left[\left\{1 / 2^{*}\left(| | 1|-||2|)\} /\left\{1 / 2^{*}(|11|+||2|)\}\right]^{*} 100[\%]\right.\right.\right.$
* 3. Measured in-band phase noise with the loop locked. Normalized Phase Noise is calculated from following equation. REFIN frequency $=120 \mathrm{MHz}, \mathrm{F}_{\text {PFD }}=10 \mathrm{MHz}$.
$\left(\mathrm{PN}_{\text {total }}=\mathrm{PN}_{\text {synth }}-10 \log \mathrm{~F}_{\text {PFD }}-20 \log \mathrm{~N}\right)$
PN $\mathrm{N}_{\text {total }}$ : Normalized Phase Noise
PN $N_{\text {synth }}$ : In-band Phase Noise
$\mathrm{F}_{\text {PFD }}$ : PFD Frequency


Figure. 4 Charge Pump Characteristics - Voltage vs Current

### 10.4. Loop filter

Figure. 5 shows loop filter topology used to evaluate AK1573, AK1573B and AK1573C.


Figure. 5 Loop Filter Schematic

## 11. Typical Characteristics

$\mathrm{VDD}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{BIAS}$ resistance $=27 \mathrm{k} \Omega$.

## 1. Analog Characteristics

## AK1573



Figure. 6 Output power vs. Output frequency


Figure. 7 Current vs. OUTLV[2:0] bits

REFIN frequency $=100 \mathrm{MHz}$, R counter $=100, \mathrm{CP} 1[2: 0]$ bits $=" 111 "$


Figure. 8 Current vs. Output frequency
REFIN frequency $=100 \mathrm{MHz}, \mathrm{R}$ counter $=100$, CP1[2:0] bits $=" 111 "$ DIV[2:0] bits $=" 000 "$

(a) VCOI bit = " 0 ", DIV[2:0] bits $=$ " 000 "

(c) VCOI bit = " 1 ", DIV[2:0] bits = "001"

(b) VCOI bit = " 1 ", DIV[2:0] bits $=$ " 000 "

(d) VCOI bit = " 1 ", DIV[2:0] bits $=$ " 010 "


Figure. 9 VCO Phase Noise vs. Output frequency OUTLV[2:0] bits = "111"


Figure. 10 VCO Phase Noise vs. Offset frequency
Output frequency $=1602.8 \mathrm{MHz}, \mathrm{VCOI}$ bit $=" 1$ ", OUTLV[2:0] bits $=" 111$ "


Figure. 13 Closed loop Phase Noise
REFIN frequency $=120 \mathrm{MHz}$, R counter $=12$, Prescaler $=8 / 9$
Loop Filter: C1 $=33 \mathrm{pF}, \mathrm{C} 2=1500 \mathrm{pF}, \mathrm{C} 3=\mathrm{N} / \mathrm{A}, \mathrm{R} 2=10 \mathrm{k} \Omega, \mathrm{R} 3=0 \Omega$

## AK1573B



Figure. 14 Output power vs. Output frequency


Figure. 15 Current vs. OUTLV[2:0] bits
REFIN frequency $=100 \mathrm{MHz}$, R counter $=100$, CP1[2:0] bits $=" 111$ "


Figure. 16 Current vs. Output frequency
REFIN frequency $=100 \mathrm{MHz}$, R counter $=100$, CP1[2:0] bits $=" 111$ ", DIV[2:0] bits $=" 000 "$

(a) VCOI bit = "0", DIV[2:0] bits = "000"

(c) VCOI bit = "1", DIV[2:0] bits = "001"

(b) VCOI bit = "1", DIV[2:0] bits = "000"

(d) VCOI bit = " 1 ", DIV[2:0] bits $=$ " 010 "


Figure. 17 VCO Phase Noise vs. Output frequency OUTLV[2:0] bits = "111"


Figure. 18 VCO Tuning Sensitivity


Figure. 19 VCO Tuning Sensitivity

## AK1573C



Figure. 20 Output power vs. Output frequency


Figure. 21 Current vs. OUTLV[2:0] bits
REFIN frequency $=100 \mathrm{MHz}$, R counter $=100, \mathrm{CP} 1[2: 0]$ bits $=" 111$ "


Figure. 22 Current vs. Output frequency
REFIN frequency $=100 \mathrm{MHz}$, R counter $=100$, CP1[2:0] bits $=" 111$ ", DIV[2:0] bits $=" 000 "$

(a) VCOI bit = " 0 ", DIV[2:0] bits $=$ "000"

(c) VCOI bit ="1", DIV[2:0] bits = "001"

(b) VCOI bit = " 1 ", DIV[2:0] bits = "000"

(d) VCOI bit =" 1 ", DIV[2:0] bits $=$ " 010 "


Name	Data	Address			
A/B	D19 to D0	0	0	0	1
C/P		0	0	1	0
Ref/Pres		0	0	1	1
Function		0	1	0	0



- Notes on writing registers

1. When PDN1 pin = "H" and LDO (VREF1 pin) is active, access to the register is available
2. The setting of <Address0x02> and <Address0x03> will be reflected to the behavior of AK1573 when the register <Address0x01> is written
3. <Address0x04> can be written independently.
4. After PDN1 pin turns to " H ", all of the register values are indefinite. It is needed to write the data to all the registers to confirm.

## Examples of the register setting

## Ex. 1 Power on setting

1. Set PDN1 pin ="L" and PDN2 pin ="L"
2. Power on VCOVDD, PVDD and CPVDD

Note) All VDD should be powered on simultaneously
3. Set PDN1 pin = "H" and PDN2 pin = "L" (VBG / LDO are powered on)
4. Write the data to the register <Address0x04>
5. Set PDN1 pin = "H" and PDN2 pin = "H" (All blocks are powered on)
6. Write the data to the register <Address0x01> and <Address0x02>
7. Write the data to the register <Address0x01>

## Ex. 2 Change frequency settings

1. Write the data to the register <Address0x01>

## Ex. 3 Change Charge Pump settings

1. Write the data to the register <Address0x02>
2. Write the data to the register <Address0x01>

## Ex. 4 Change Reference dividing ratio

1. Write the data to the register <Address0x03>
2. Write the data to the register <Address0x01>

## < Address0x01 : N counter >

## D[18:6]

B[12:0] : B (Programmable) counter setting
Set the dividing ratio of B (Programmable) counter.
The setting range is shown in the following table.

$\mathrm{B}[12: 0]$	Programmable counter dividing ratio	Remark
0	-	Prohibited
1	-	Prohibited
2	-	Prohibited
3	3	
$:$	$:$	
8191	8191	

## D[5:0]

A[5:0] : A (Swallow) counter setting
Set the dividing ratio of A (Swallow) counter.
The setting range is shown in the following table.

$\mathrm{A}[5: 0]$	Swallow counter dividing ratio	Remark
0	0	
1	1	
2	2	
$:$	$:$	
63	63	

The data at $\mathrm{A}[5: 0]$ bits and $\mathrm{B}[12: 0]$ bits must meet the following requirements:
$B[12: 0]$ bits $\geq 3, B[12: 0]$ bits $\geq A[5: 0]$ bits
See "13. Frequency Setting" for details of the relationship between a frequency dividing ratio N and the data at $\mathrm{A}[5: 0]$ bits and $\mathrm{B}[12: 0]$ bits.

It is prohibited to set frequency once again until VCO calibration and Fast lock-up mode is completed.

## < Address0x02 : C/P >

## D[8: 6]

CP2[2:0] : Charge pump current setting for Fast Lockup operation

## D[2:0]

## CP1[2:0] : Charge pump current setting for normal operation

AK1573 provides two settings for charge pump current. CP1[2:0] bits are for normal operation and CP2[2:0] bits are for Fast Lockup mode.
The following formula shows the relationship among the resistance value, the register setting and the electric current.

Charge pump current (Icp) $[\mathrm{A}]=\mathrm{Icp}$ _min $[\mathrm{A}] \times[(\mathrm{CP} 1[2: 0]$ bits or $\mathrm{CP} 2[2: 0]$ bits setting $)+1]$
Charge pump minimum current (Icp_min) $[A]=9.45 /$ BIAS Resistance $[\Omega]$

The following table shows the typical Icp for each status.
Icp (typ.) unit : $\mu \mathrm{A}$

CP1[2:0], CP2[2:0]	BIAS		
	$33 \mathrm{k} \Omega$	$27 \mathrm{k} \Omega$	$22 \mathrm{k} \Omega$
0	286	350	430
1	573	700	859
2	859	1050	1289
3	1146	1400	1718
4	1432	1750	2148
5	1718	2100	2577
6	2005	2450	3007
7	2291	2800	3436

## < Address0x03: Ref/Pres >

## D[19:16]

## CALTM[3:0] Set the calibration precision of VCO

The register CALTM[3:0] bits set the calibration precision and time. The larger CALTM[3:0] bits are set, the higher calibration precision becomes, but the longer calibration time is required as trade-off. Set the value calculated by the following formula to get enough calibration precision. However, CALTM[3:0] bits should be set from 0 to 10 . Over 11 are prohibited. See "15. VCO" for details of the VCO calibration.

CALTM[3:0] bits $\geq 10-\log (B[12: 0]$ bits) $/ \log (2)$
The calibration time can be estimated as following formula;

Calibration time $=1 / F_{\text {PFD }} \times 11 \times 2{ }^{\wedge}$ CALTM[3:0] bits

## D[15:14]

PRE[1:0] : Selects a dividing ratio for the prescaler
00: $P=8$
01: $P=16$
10: $P=32$
11: $P=64$
The prescaler value should be selected so that the prescaler output frequency is less than or equal to 300 MHz .

## D[13:0]

R[13:0] : 14bit Reference Counter
The following settings can be selected for the reference clock division.
The allowed range is 1 ( $1 / 1$ division) to 16383 ( $1 / 16383$ division). 0 cannot be set.
The maximum PFD frequency is 104 MHz .

$\mathrm{R}[13: 0]$	Dividing Ratio
0	Prohibited
1	1
2	2
3	3
4	4
$\vdots$	$\vdots$
$\vdots$	$\vdots$
16381	16381
16382	16382
16383	16383

< Address0x04 : Function >

## D[17]

LDCNTSEL : Lock Detect Precision
Set the counter value for digital lock detect.

LDCNTSEL	Function	
0	15 times Count	unlocked to locked
	3 times Count	locked to unlocked
1	31 times Count	unlocked to locked
	7 times Count	locked to unlocked

## D[16]

## FASTEN : Enables the Fast Lock mode

See "14. Fast Lock-up mode" for details of the Fast Lock-up function.
0 : Fast Lockup disable
1: Fast Lockup enable

## D[15]

CPHIZ : TRI-STATE output setting for charge pump
0 : Charge pumps are activated
1: Tri-State

## D[14]

## LD : Selects output from LD pin

See "12. Lock detect" for details of the Lock detect function.
0 : Digital lock detect
1: Analog lock detect

## D[13:11]

DIV[2:0] : Selects Divide of Output
Select the dividing ratio in accordance with the used frequency.
0 : Divide by 1
1: Divide by 2
2: Divide by 4
3: Divide by 8
4: Divide by 16
5: Divide by 32
6: Divide by 64
7: Prohibited

## D[10]

MTLD : Local signal mute
0: Disable to mute local signal in unlock state.
1: Enable to Mute local signal in unlock state.
Set MTLD bit = "0" when LD bit = " 1 ".

## D[9:7]

OUTLV[2:0] : Select output power level
Adjust bias current of output buffer

OUTLV[2:0]	Bias current (mA)
0	4
1	8
2	12
3	16
4	20
5	24
6	28
7	32

## D[4]

VCOI : VCO core current setting
0 : Low current mode
1: Normal

## D[3:0]

## FAST[3:0] : FAST counter timer

Set the effective time of fast lock-up mode.
Counter value $=3+$ FAST[3:0] bits $\times 4$

FAST[3:0]	Counter value
0	3
1	7
2	11
3	15
4	19
5	23
6	27
7	31
8	35
9	39
10	43
11	47
12	51
13	55
14	59
15	63

## < Address0x05 : Software Reset >

When writing a <Address0x05>, all of the internal flip-flops, except for the register and calibration results, are initialized. Internal flip-flops except for the register and the calibration results is initialized in the state of PDN1 pin = PDN2 pin = "H". When standing up PDN1 pin and PDN2 pin at the same time or PDN1 pin and PDN2 pin are fixed to "H", internal flip-flops are not initialized. In this case, it is needed to initialize internal flip-flops using the Software Reset.

## 13. Function Descriptions

### 13.1. Lock detect

Lock detect output can be selected by LD bit in <Address0x04>. When LD bit = "1", LD pin outputs a phase comparison result which is from phase detector directly (This is called "analog lock detect"). When LD bit = " 0 ", the output is the lock detect signal according to the on-chip logic (This is called "digital lock detect").
The digital lock detect can be done as following :
The LD pin is in unlocked state (which outputs " $L$ ") when a frequency setup is made.
In the digital lock detect, the LD pin outputs " H " (which means the locked state) when a phase error smaller than a cycle of [REFIN] clock (T) is detected for $N$ times consecutively. When a phase error larger than T is detected for N times consecutively while the LD pin outputs " H ", then the LD pin outputs "L" (which means the unlocked state). The counter value $N$ can be set by LDCNTSEL bit in <Address0x04>. The N is different between "unlocked to locked" and "locked to unlocked".

LDCNTSEL bit	unlocked to locked	locked to unlocked
0	$\mathrm{~N}=15$	$\mathrm{~N}=3$
1	$\mathrm{~N}=31$	$\mathrm{~N}=7$

The lock detect signal is shown below


Case of R counter $=1$ (Note)


* $R$ counter can be set by $\mathrm{R}[13: 0$ ] bits in Address $0 \times 03$

Figure. 26 Digital Lock Detect Operations


Lock -> Unlock


### 13.2. Frequency Setting

The following formula is used to calculate the frequency setting for the AK1573.
Frequency Setting $=F_{\text {PFD }} \times(P \times B+A)$

$\mathrm{F}_{\text {PFD }}$	$:$ PFD frequency
P	Prescalor value (refer to Address0×02 : Pre[1:0] )
B	$: \mathrm{B}($ Programmable) counter (refer to Address0×01: $\mathrm{B}[12: 0])$
A	$: \mathrm{A}($ Swallow)counter (refer to Address $0 \times 01: \mathrm{A}[5: 0])$

- Example

Set the AK1573 as follows to obtain Frequency setting $=2100 \mathrm{MHz}$ with $\mathrm{F}_{\text {PFD }}=200 \mathrm{kHz}$

$$
\begin{aligned}
& P=8 \quad(\text { Address0x02 : Pre[1:0] bits }=0) \\
& B=1312 \quad(\text { Address0x01 }: B[12: 0] \text { bits }=1312) \\
& A=4 \quad(\text { Address0x01: A[5:0] bits }=4)
\end{aligned}
$$

Frequency setting $=200 \mathrm{k} \times(8 \times 1312+4)=2100 \mathrm{MHz}$

## Note) Lower limit for setting consecutive dividing numbers

For the AK1573, it is not possible to set consecutive dividing ratio below the lower limit (The lower limit is determined by a dividing ratio set for the prescaler).
The following table shows an example where consecutive dividing numbers below the lower limit cannot be set. The consecutive dividing ratio can be set when $B \geq P-1$.

## *P=8 (Dual modulus prescaler 8/9)

P	$\mathrm{B}[12: 0]$	$\mathrm{A}[5: 0]$	Dividing ratio	
8	6	6	54	55 cannot be set as an $N$ divider.
8	7	0	56	This is the lower limit.   56 or over can consecutively be set as   an N divider.
8	7	1	57	
$:$	$:$	$:$	$:$	
8	7	7	63	
8	8	0	64	
$:$	$:$	$:$	$:$	

* $\mathrm{P}=16$ (Dual modulus prescaler 16/17)

P	B	A	N	
16	14	14	238	239 cannot be set as an N divider.
16	15	0	240	This is the lower limit.   240 or over can consecutively   be set as an N divider.
16	15	1	241	
$:$	$:$	$:$	$:$	
16	15	15	255	
16	16	0	256	
$:$	$:$	$:$	$:$	

* $\mathrm{P}=32$ (Dual modulus prescaler 32/33)

P	B	A	N	
32	30	30	990	991 cannot be set as an N divider.
32	31	0	992	This is the lower limit.   992 or over can consecutively   be set as an N divider.
32	31	1	993	
$:$	$:$	$:$	$:$	
32	31	31	1023	
32	32	0	1024	
$:$	$:$	$:$	$:$	

* $\mathrm{P}=64$ (Dual modulus prescaler 64/65)

P	B	A	N	
64	62	62	4030	4031 cannot be set as an N divider.
64	63	0	4032	This is the lower limit.   4032 or over can consecutively   be set as an N divider.
64	63	1	4033	
$:$	$:$	$:$	$:$	
64	63	63	4095	
64	64	0	4096	
$:$	$:$	$:$	$:$	

### 13.3. Fast Lock-up mode

The AK1573 goes into Fast Lock Up mode by setting FASTEN bit in <Address0x04> to "1". When A and B counter setting is finished (writing in <Address0x01>), Fast Lock Up mode starts after calibration. The Fast Lock Up mode is enabled only during the time period set by the timer according to the counter value in FAST[3:0] bits in <Address0x04>. The charge pump current is set to the value specified by CP2[2:0] bits. When the specified time period elapses, the Fast Lock Up mode operation is switched to the normal operation, and the charge pump current returns to CP1[2:0] bits setting.

FAST[3:0] bits in <Address0x04> is used to set the time period for this mode. The following formula is used to calculate the time period :

Switchover time $=1 /$ FPFD $\times$ Counter Value
Counter Value $=3+4 \times($ FAST[3:0] bits setting $)$


Figure. 27 Fast Lock-up Mode Timing Chart

### 13.4. VCO

## Calibration

The VCO core in AK1573 uses several overlapping bands to achieve low Phase Noise, low VCO sensitivity ( $\mathrm{K}_{\mathrm{vco}}$ ) and wide frequency range. The correct band is chosen automatically at frequency setting by VCO calibration. The calibration starts when A counter and B counter in <Address0x01> are set. During the calibration, VCO $\mathrm{V}_{\text {CNT }}$ is disconnected from the external loop filter and connected to an internal reference voltage. The charge pump output is Tri-State.

The internal reference voltage must be stable so that the calibration is done correctly. Therefore, it is necessary to wait $10 \mu \mathrm{sec}$ at least until <Address0x01> is set after PDN2 pin rises up to " 1 " (when 100 pF is connected to SCAP pin).

The register CALTM[3:0] bits set the calibration precision and time. The larger CALTM[3:0] bits are set, the higher calibration precision becomes, but the longer calibration time is required as trade-off. Set the value calculated by the following formula to get enough calibration precision. However, CALTM[3:0] bits should be set from 0 to 10 . Over 11 are prohibited.

$$
\text { CALTM[3:0] bits } \geq 10-\log (B[12: 0]) / \log (2)
$$

The calibration time can be estimated as following formula;
Calibration time $=1 / F_{\text {PFD }} \times 11 \times 2{ }^{\wedge}$ CALTM[3:0] bits
It is prohibited to set frequency once again until VCO calibration and Fast lock-up mode is completed.

## Low Current Mode

The AK1573 goes into low current mode by setting VCOI bit in <Address0x04> to "0". This mode decreases VCO core current but Phase Noise gets worse compared to normal mode.

## 14. Power on sequence

1. Recommended sequence

2. The sequence when PDN1 pin and PDN2 pin are powered on simultaneously


Figure. 28 Power on sequence

* After powering on AK1573, the initial register's values are not defined. It is required to write the data to all the registers.
* It takes about 10 msec from PDN1 pin rise-up to LDO rise-up.
* If PDN1 pin and PDN2 pin are powered on simultaneously, the operation of AK1573 is not defined until the registers are set.

15. Recommended External Circuits


Figure.29. Evaluation Board Schematic

Table. 1

Ref.	Value	Ref.	Value	Ref.	Value	Ref.	Value
C1	Loop Filter	C7	100 pF	C 13	100 pF	R3	Loop Filter
C2	Loop Filter	C 8	100 pF	C 14	100 pF	R 1	$27 \mathrm{k} \Omega$
C3	Loop Filter	C 9	100 pF	C 15	10 nF	R5	$100 \Omega$
C4	470 nF	C 10	100 pF	L 1	$2.2 \mu \mathrm{H}$	R 6	$100 \Omega$
C5	100 pF	C 11	10 nF	L 2	$2.2 \mu \mathrm{H}$	R 7	$51 \Omega$
C6	10 nF	C 12	220 nF	R2	Loop Filter	R8	$51 \Omega$

* The exposed pad at the center of the backside should be connected to the ground.
* TEST1 / TEST2 pins should be connected to the ground.
* RFOUT_P / RFOUT_N pins must be connected an inductor and a register to VDD.
* In the case of single-ended output operation, unused output pin is terminated through $50 \Omega$ after 100 pF capacitance.


## 16. Application Note

Differential to single-ended circuit
AK1573 has differential output ports. "15 Recommended External Circuits" shows single-ended output but users can convert differential output to single output using lumped element balun. By doing this, AK1573 outputs higher signal level compared to single-ended output with the same current consumption. Lumped element balun shows frequency dependence, so users need to populate optimized elements in order to obtain good matching characteristics. Table. 2 shows the reference values of lumped element balun.


Figure 30 Lumped Element Balun Circuit
Table. 2 Reference values of lumped element balun

Frequency Range   $[\mathrm{MHz}]$	C 20   $[\mathrm{pF}]$	C 21   $[\mathrm{pF}]$	C 22   $[\mathrm{pF}]$	L 10   $[\mathrm{nH}]$	L 11   $[\mathrm{nH}]$	L 12   $[\mathrm{nH}]$	R10   $[\Omega]$	R11   $[\Omega]$
2150 to 2250	1	1	1000	1	1	330	100	100
2000 to 2150	1	1	1000	1.5	1.5	330	100	100
1900 to 2000	1	1	1000	2	2	330	100	100
1770 to 1900	1	1	1000	2.4	2.4	330	100	100
1600 to 1770	1	1	1000	3.3	3.3	330	100	100
1450 to 1600	1	1	1000	4.3	4.3	330	100	100
1280 to 1450	1	1	1000	5.1	5.1	330	100	100
1050 to 1280	1	1	1000	7.5	7.5	330	100	100
800 to 1050	1	1	1000	10	10	330	100	100
550 to 800	1	1	1000	15	15	330	100	100
350 to 550	1.6	1.6	1000	22	22	330	100	100
200 to 350	4.7	4.7	1000	47	47	330	100	100
100 to 200	8	8	1000	82	82	330	100	100
60 to 100	15	15	1000	150	150	330	100	100
40 to 60	27	27	1000	270	270	330	100	100
30 to 40	39	39	1000	390	390	330	100	100



$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin Name	I/O	$\begin{aligned} & \hline \text { R0 } \\ & (\Omega) \end{aligned}$	Current ( $\mu \mathrm{A}$ )	Function
1	BIAS	10	300		Analog input/output pin
2	VREF2	10	300		
4	SCAP	10	100		
15	VREF1	10	300		
23	CP	0			Analog output pin
11	RFOUT_P	0			
12	RFOUT_N	0			Open-collector output pin

## 18. Package

### 18.1. Outline Dimensions



* The exposed pad at the center of the backside should be connected to ground.


### 18.2. Marking

(a) Style
(b) Number of pins
(c) 1 pin marking
(d) Product number AK1573 AK1573B AK1573C
(e) Date code
: QFN
: 24-pin
: 0
: XXXX (4 or 5 digits)
: AK1573
: AK1573B
: AK1573C
: YWWL (4 digits)
Y: Lower 1 digit of calendar year (Year $2015 \rightarrow 5,2016 \rightarrow 6 \ldots$ )
WW: Week
L: Lot identification, given to each product lot which is made in a week
$\rightarrow$ LOT ID is given in alphabetical order (A, B, C...)

## 19. Revision History

Date $(\mathrm{Y} / \mathrm{M} / \mathrm{D})$	Revision	Reason	Page	Contents
$15 / 08 / 03$	00	First Edition		

## IMPORTANT NOTICE

0. Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document ("Product"), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product's quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.
4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations
5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.
