Test Procedure for the NV47710PDAJGEVB Evaluation Board

Test Procedure:

1. Connect the test setup as shown in Figure 1. See Table 1 with required equipment.

- Letter F - Force line
- Letter S - Sense line

2. Select output current limit by connecting jumper $\mathbf{J}_{5}-\mathbf{J}_{8}$.

- $\mathrm{J}_{5}-\mathrm{I}_{\text {Limo }} \sim 10 \mathrm{~mA}$
- \mathbf{J}_{6} - LIM $^{1} \sim 170 \mathrm{~mA}$
- J_{7} - $\mathrm{I}_{\mathrm{LIM2} 2} \sim 340 \mathrm{~mA}$
- $J_{8}-I_{\text {LIM }}-\mathrm{R}_{\mathrm{CSO}}$ position available for individual current limit setting by resistor from range 728Ω to $25.5 \mathrm{k} \Omega$

3. Set Input Voltage and turn on Power Supply.
4. Enable chip by connecting external Voltage Source on jumper J_{3}. Output voltage must be higher than 2.31 V but maximally 7 V .
5. Set load current (max 350 mA) and turn on Load.
6. Monitor Output voltage, it's given according to Equation 1.

$$
\begin{equation*}
V_{\text {out }}=1.275\left(1+\frac{B_{1}}{A_{2}}\right) \tag{eq.1}
\end{equation*}
$$

7. Monitor CSO voltage on connector J_{4}. It should be max 2.55 V in steady state. The CSO voltage is proportional to output current according to Equation 2.

$$
V_{\operatorname{cso}}=I_{\text {out }}\left(R_{\operatorname{css}} \times \frac{1}{100}\right)
$$

8. Compare your results with measured results in Table 2.

Figure 1. Test Setup

Table 1: Required Equipment

Equipment	Ranges
Power Supply	$0 \mathrm{~V}-45 \mathrm{~V} / 500 \mathrm{~mA}$
Voltage Source	$0 \mathrm{~V}-7 \mathrm{~V}$
Load	$0 \mathrm{~mA}-500 \mathrm{~mA}$
V - meter	$0 \mathrm{~V}-20 \mathrm{~V}$
A - meter	$0 \mathrm{~mA}-500 \mathrm{~mA}$

Figure 2. PCB Layout
Table 2: Measured Results

Parameter	Test Conditions	Value		Unit
		Nominal	Measured	
Output Voltage	$\begin{gathered} \mathrm{V}_{\text {in }}=13.5 \mathrm{~V}, \mathrm{~V}_{\text {out_nom }}=5.02 \mathrm{~V}, \mathrm{I}_{\text {out }}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{CsO}}=\text { Short to } \\ \text { ground } \end{gathered}$	5.02	5.03	V
	$\begin{gathered} \mathrm{V}_{\text {in }}=13.5 \mathrm{~V}, \mathrm{~V}_{\text {out_nom }}=5.02 \mathrm{~V}, \mathrm{I}_{\text {out }}=350 \mathrm{~mA}, \mathrm{R}_{\mathrm{CsO}}=\text { Short } \\ \text { to ground } \end{gathered}$	5.02	5.04	
Output Current	$\mathrm{V}_{\text {in }}=13.5 \mathrm{~V}, \mathrm{~V}_{\text {out_nom }}=5.02 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0 \mathrm{~V}, \mathrm{R}_{\text {cso }}=25.5 \mathrm{k} \Omega$	10	10.45	mA
	$\mathrm{V}_{\text {in }}=13.5 \mathrm{~V}, \mathrm{~V}_{\text {out_nom }}=5.02 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0 \mathrm{~V}, \mathrm{R}_{\text {cso }}=1.5 \mathrm{k} \Omega$	170	175.6	
	$\mathrm{V}_{\text {in }}=13.5 \mathrm{~V}, \mathrm{~V}_{\text {out_nom }}=5.02 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0 \mathrm{~V}, \mathrm{R}_{\text {CSO }}=750 \Omega$	340	353	

